
WEEK 1 RECAP

INTRODUCTION TO DEEP
LEARNING WS 18/19

Kristin VOGEL
Tunç YILMAZ

1

BACK-PROPAGATION
Explain the back-propagation algorithm and its importance for neural network
training!

2

• Back-propagation (backprop) refers to the method for computing the gradient of MLP for the given
input data. In a next step, another algorithm such as stochastic gradient descent is used to perform
learning using this gradient.

• In order to compute the gradient information from the cost flows backward through the network
• Backprop makes use of the chain rule and performs a Jacobian-gradient product for each operation in

the graph. To speed up, backprop calculates each derivative just once and saves it, to make it available
for repeated use. This proceeding comes at the costs of memory space.

• The following figure illustrates backprop in a computational graph:

z

y

x

w

f

f

f

z

y

x

w

f

f

f

y

x

w

f’

f

f

x

w
f

f’

f’

x

GRADIENT DESCENT
How does gradient descent work? Bonus: What are the differences between
stochastic, batch and mini-batch gradient descent?

• Suppose C(𝚹) is the cost function of a neural network where 𝚹 defines the parameter space of the
network consisting of all weights and biases. ∇C(𝚹) stands for the derivative vector consisting of all the
partial derivatives of the cost function with respect to every element of 𝚹. In such a case, the
parameter space 𝚹 is updated by gradient descent as:

𝚹’ = 𝚹 - α∇C(𝚹)

• We can imagine it’s working principle by considering
a very simple case where the cost function consists of
only a single weight, w.

• In gradient descent, the cost function consists of all training
examples, which is computationally expensive.

• Stochastic gradient descent aims to tackle this problem by randomly selecting a mini-batch of training
examples, where mini-batch is a subset of the whole batch used in gradient descent. In this way, it
takes more steps to reach the minimum of the cost function, yet the computational work is much less
compared to gradient descent.

C(w)

wInitial w Final w

Minimum
Cost

3

• Remember the XOR function represented below. The function takes on two binary values (x1 and x2) ,
and returns 1 when any one of these values is 0, and returns 0 otherwise:

• In the original x space, say, when x1 = 0, y must increase as x2 increases. Also when x1 = 1, y must
decrease as x2 increases. A linear model must assign a fixed coefficient w2 to x2 and at the same time
cannot use x1 to change w2. Therefore it cannot simply solve this problem. As it can be exemplified by
the XOR function, some problems therefore require non-linear models for a thorough solution.

NON-LINEARITY
Why do we need non-linearities?

4

1

10

0

x1

x2

1

0

0

1

ACTIVATION FUNCTIONS
What activation functions do you know? Sketch them and discuss their pros and
cons!

5

0.0

0.6

0.4

0.8

1.0

0.2

-10 -5 5 100

SIGMOID

𝞂(
z)

=
1/

1+
ex

p(
-z)

Can be used for probabilities = range is (0,1)
Insensitive to small changes in its input at extremes

0.0
0

ReLU

𝞂(
z)

=
m

ax
{0

,z}

Although being nonlinear, preserves some linear qualities
Units must be activated initially by assigning small weights

0

6

4

8

10

2

-10 -5 5 100

SOFTPLUS

𝞂(
z)

=
lo

g(
1+

ex
p(

z))

Smoother than ReLU near 0, its range is (0,∞)
Derivative is difficult since it contains log

0.0

0.6

0.4

0.8

1.0

0.2

-10 -5 5 100

PERCEPTRON

𝞂(
z)

=
0

if
z<

0;
 1

 if
 z≥

0

Very simple
Incompatible with back propagation

CHOICE OF OUTPUT UNITS
How do the choice of output units and the loss function relate?

6

• In general, we seek a loss function with a range of output values that comply with the actual output
values of the dataset.

• For example:
- if we have a classification problem, actual outputs will be distributed with probabilities ranging

between 0 and 1. In such a case, sigmoid or perceptron might be relevant.
- if we have a regression problem, an activation function like softplus that can yield a range of

values greater than 1 might be used.

Output Type Output Distribution Output Layer Cost Function

Binary Bernouilli Sigmoid Binary Cross-Entropy
Discrete Multinouilli Softmax Discrete Cross-Entropy

Continuous Gaussian Linear Gaussian Cross-Entropy (MSE)
Continuous Mix of Gaussian Mixture Density Cross-Entropy
Continuous Arbitrary See Part III Various

NEGATIVE LOG-LIKELIHOOD
Why is the negative log-likelihood a popular choice as loss function?

7

• In neural networks, the gradient of the loss function is expected to be large and predictable enough in
order to facilitate the job of the learning algorithm.

• Activation functions that saturate at certain points do not meet this expectation.
• An example of such a function might be one that involves an exponential component which results in

saturation for significantly negative values.
• Negative log-likelihood helps avoid this problem by undoing the exponential component of output

units.

MAXOUT
What is Maxout? Sketch a layer with Maxout activation!

8

• Maxout is a piecewise linear approximation to any convex function.
• It a generalisation of rectified linear units that divide z into k values instead of applying an element-

wise function g(z). Maxout units gives the maximum element of one of these groups as follows:

g(z)i = maxj∈G(i) zj, where G(i) is the set of indices into the inputs for group i

• Each mahout unit is parametrised by k weight vectors instead of 1, so they require more regularisation
in comparison to ReLU. A simple example can be given as:

x2

Here, maxout approximates the
x2 function by 3 linear functions.
The maximum of these functions
will be given by the maxout unit

LINEAR HIDDEN LAYER
Why use a linear hidden layer?

9

• A simple kind of output unit that uses an affine transformation with no nonlinearity such as y = WTh + b
is called a linear unit.

• Linear hidden layers consisting of such units are preferred when the output of the network tried to
produce the mean of a conditional Gaussian distribution. In such a case, maximizing the log-likelihood
is equivalent to minimising the MSE.

• Since linear units do not saturate, they cause no difficulty for gradient descent based learning
algorithms.

UNIVERSAL APPROXIMATION THEOREM
What does the universal approximation theorem (practically) mean?

10

• The principle of universal approximation theorem is that any continuous function (linear or non-linear)
on a closed and bounded subset of ℝn can be approximated by a feedforward neural network with a
linear output layer and at least one hidden layer with a squashing activation function (such as a sigmoid
function that squeezes in values to a range of (0,1))

• It practically means that regardless of the properties of the function that we’re trying to learn, a large
feedforward network suffices to represent or approximate this function.

• However we should keep in mind that it is an approximation rather than a guaranteed learning with
generalization.

COMPUTATIONAL GRAPHS
Sketch and explain the computation graph for the cross-entropy loss of an MLP
with 1 hidden layer!

11

U1 JU2

X

U4H U3

W b

matmul

+

relu matmul

W2

+
cross

entropy

b2 y

