

Introduction to Deep Learning

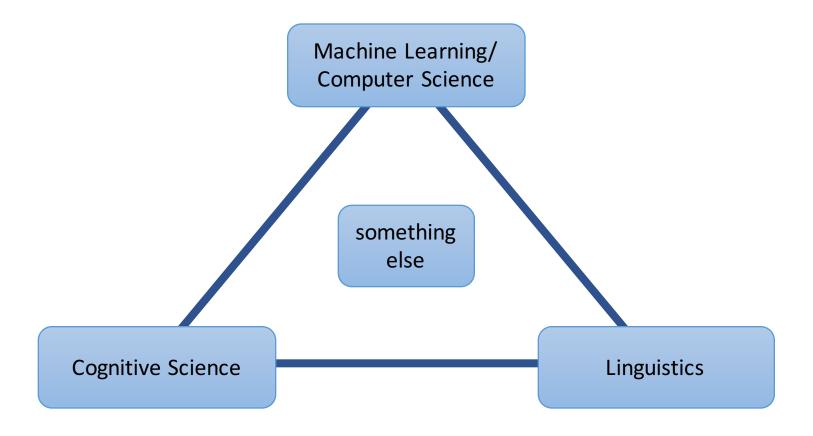
Opening Session

Andreas Krug, M.Sc. ankrug@uni-potsdam.de

× =

15. October 2018

"living statistics"



How long have you studied already (Bachelor + Master + PhD)?

less time more time

What's your background/What did you study?

How experienced are you in Machine Learning?

less experienced experienced

How experienced are you in Deep Learning (and in Tensorflow)?

less experienced experienced

About me:

- Background in Bioinformatics
 - Mathematical modelling
 - Network analysis & optimization
- Since 2016 PhD student
 - Deep generative models
 (teaching "Learning Generative Models" class)
 - Introspection for deep neural networks

Deep Learning

a brief introduction

Typical Machine Learning Workflow (for classification)

make use of domain knowledge from experts

data

(hand-crafted) feature extraction "simple" trainable classifier

predicted labels

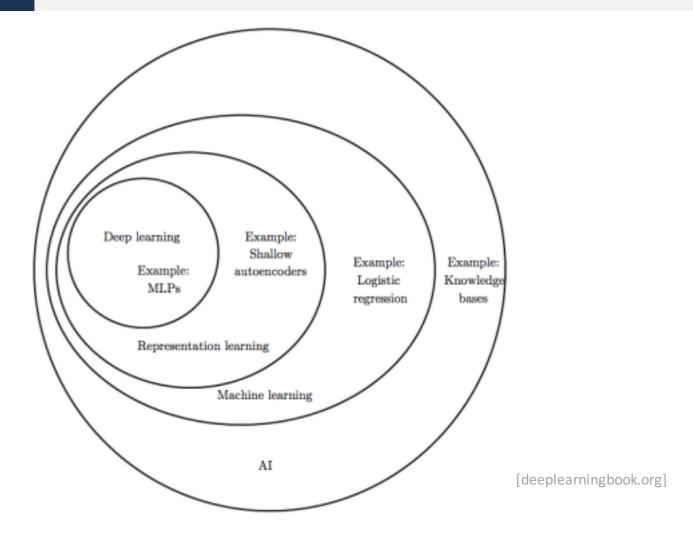
train with labeled data (supervised)

Typical Deep Learning Workflow (for classification)

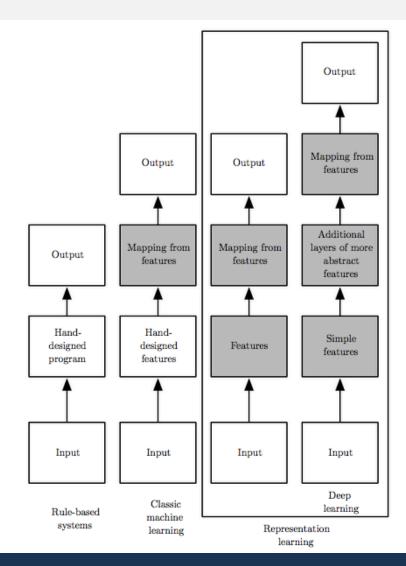
make use of abundant data and (GPU) compute power

data

trainable feature transform(s)

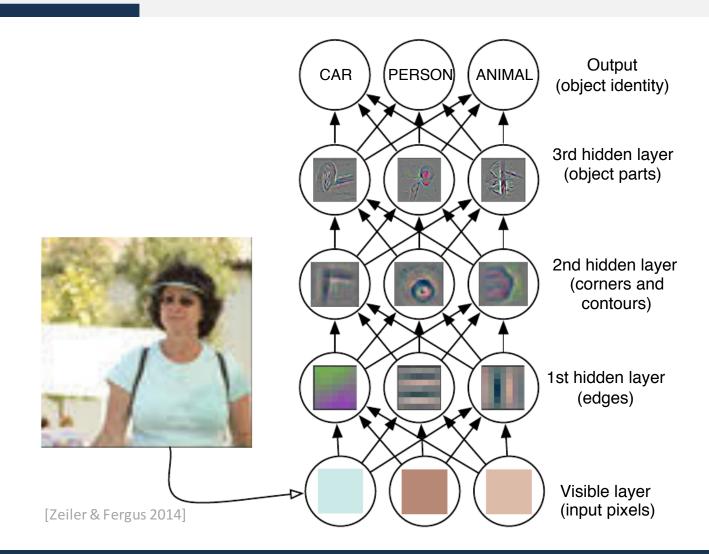

trainable classifier

predicted labels


e.g., "pre-train" with unlabeled data (unsupervised)

train with labeled data (supervised)

[deeplearningbook.org]


The Promise of Deep Learning

• learn suitable <u>feature representations</u> along with the actual learning task

using a general-purpose learning procedure

An example Deep Net

Course design

What do you expect?

Group task:

- Writing down expectations for the course individually ~5min
- Discuss and collect within the group ~10min
- 3. Collecting the expectations on a flip chart/board ~10min

Group task: individual stage

What are your expectations for this course? For example regarding:

- topics
- skills
- course format
- lecturer

Group task: group stage

Asking each in turn to

- 1. briefly introduce yourself
- 2. share your expectations

In the group

- 1. discuss about uncertainties
- collect & order the flash cards

Group task: panel stage

- each group
 - shortly present your collection
 - pin the flash cards to the blackboard

Learning Goals

At the end of the course, you are able to ...

- confidently apply DL techniques to develop a solution for a given problem
- follow recent DL publications and critically assess their contributions
- formulate **hypotheses** and design & conduct DL experiments to **validate** them
- document progress & design decisions for reproducibility and transparency please add your goals!

Course Format

this course may not be suitable for ...

- mere credit collectors
- passive attendees
- remote students

end of withdrawal period: November 20, 2018

This is **not** how you will learn...
you will need to **participate**

The Nuremberg Funnel (1647)

What is the course workload?

Preparation

(session summary)

- reading: book chapters
 - papers
 - blogs

channel discussions

weekly blog posts

- new insights
- hints, tricks & hacks
- open questions

3-6h per week

In Class

"last episode on IDL" (3-min summary)

literature discussion / Q&A small-group activity (25-60 min)

project / assignments discussion / Q&A (25-60 min)

150h total

Practical Work

weekly exercise assignments (until week 7 or 8)

channel discussions

course project working in teams

- 2-4 team members
- scrum-style weekly sprints
- team progress blog

3-6h per week

grading: oral exam (20-30 min)

Topics (tentative)

- MLPs, Gradient Descent & Backpropagation
- Convolutional Neural Networks
- Recurrent/Recursive Neural Networks
- Auto-Encoders
- Regularization Techniques
- Advanced Regularization Techniques
- Introspection & Inception
- Optimization Techniques
- Advanced Training Strategies

Universität Potsdam

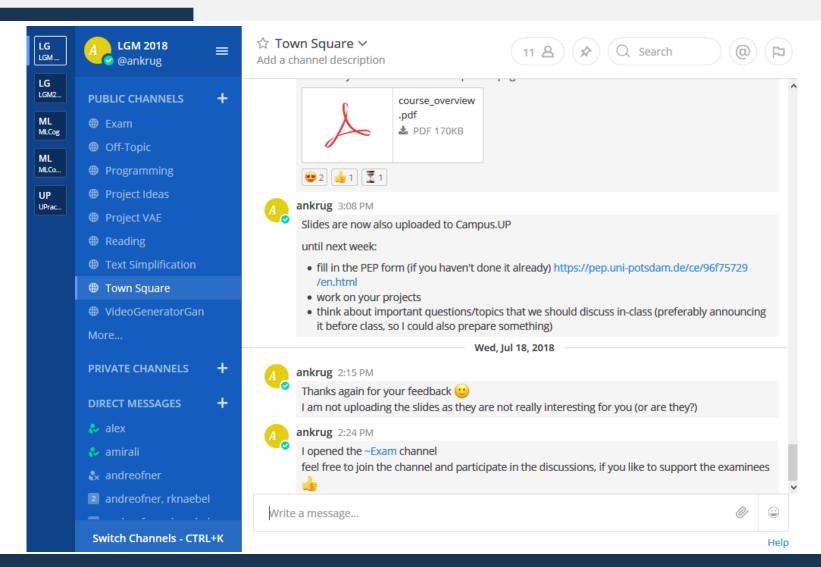
Online Tools

- Mattermost (~Slack) channel
 - channels (course / personal / team)
 - Messaging
- Campus.UP workspace
 - blogs (course / personal / team)
 - forum
 - wiki
- GPU compute environment
 - shell access & jupyterhub for notebooks

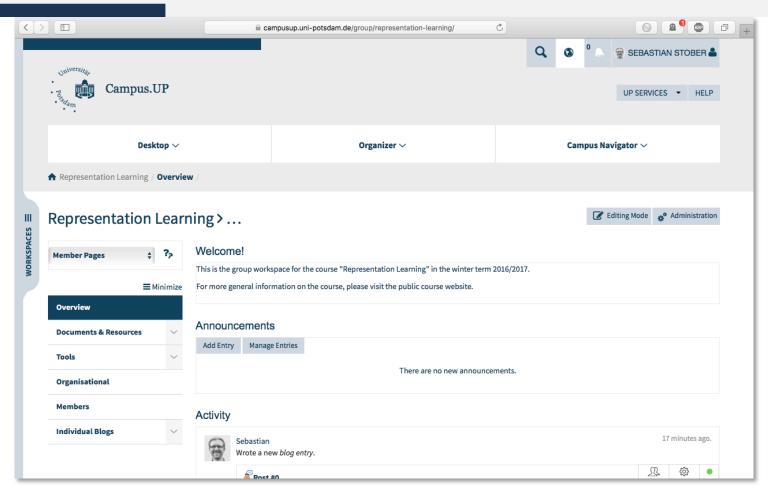
GPU Compute Servers

10 GPU Compute Servers

- 8 Pascal Geforce 1080 Ti GPUs
- 256 GB RAM
- 24 CPU cores
- jupyterhub server for notebooks
- fully dockerized



Jupyterhub



Mattermost Channel

Campus. UP Workspace

https://campusup.uni-potsdam.de

Session Summaries

last episode on "Introduction to Deep Learning" …

rotating job!(2 persons per session)

- short summary in course Wiki
 - + 3-min intro recap at next session
 - key topics
 - results of the discussion
 - optional photos

Q&A Channel

 guide for what is covered in class deadline: Friday noon (12:00)

• do not hesitate to post questions! (If you got one, you are probably not the only one!)

post a comment if you know the answer

Universität Potsdam

Contribute

- ask in your channel and Q&A
- comment / like / rate
- answer
- document
 - hints, tricks & hacks
- recommend
 - additional readings (papers, blogs, etc.)
- give (constructive) feedback

Programming exercises

- programming exercises are mandatory!
- solutions need to be submitted by Sunday 18:00 (day before lecture)
- you should be able to present your solution in course (random selection)
- 1 missed exercise can be excused
- more than 1 missed exercise leads to exclusion from course by November 20!

Questions?

Assignments until next week

 Join Campus. UP Workspace "Introduction to Deep Learning WS2018"

https://campusup.uni-potsdam.de/group/introduction-to-deep-learning-ws2018/

- introduce yourself in a short blog post including Picture, Name, Background, Motivation
- Join Mattermost find the link on <u>Campus.UP</u> or <u>ask me via Mail</u> (I don't want this to be available for everyone)
- Reading: MLPs, Gradient Descent & Backpropagation
- Programming exercise:
 First steps in Tensorflow

Slides & assignments on:

https://mlcogup.github.io/idl_ws18/