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Receptive	field

Group	exercise



Receptive	field
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CHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3, and
also highlight the input units in x that affect this unit. These units are known as the
receptive field of s3. (Top) When s is formed by convolution with a kernel of width , only3
three inputs affect s3. When(Bottom) s is formed by matrix multiplication, connectivity
is no longer sparse, so all of the inputs affect s3.
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Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (Fig. ) or pooling9.12
(Sec. ). This means that even though9.3 direct connections in a convolutional net are very
sparse, units in the deeper layers can be indirectly connected to all or most of the input
image.
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1D-conv,	kernel=3

1D-conv,	kernel=3

1	pixel	sees	3
their	receptive	fields	overlap	by	2
receptive	field	=	3*3 – (3-1)*2 =	5
1	pixel	sees	3
receptive	field	=	3



[Y.	Bengio and	Y.	Lecun,	1995]
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CNN	from	Y.	LeCun and	Y.	Bengio:	Convolutional	Networks	for	Images,	Speech,	and	Time-Series,	
in	Arbib,	M.	A.	(Eds),	The	Handbook	 of	Brain	Theory	and	Neural	Networks,	MIT	Press,	1995.

LeNet
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=	fully-connected

• number	of	parameters	in	each	layer
• total	number	of	parameters	in	the	CNN
• number	of	parameters	in	a	single	fully-connected	 layer
• size	of	the	receptive	field	in	each	layer

What	is	the: ?
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=	fully-connected

#	parameters

4x1x5x5	=	100 4 12x4x5x5	=	1200 12 26x12x4x4	=	4992

total: 6308

a	single	fully-connected	layer:	28x28x26	=	20384

receptive field 5x5 6x6 14x14 16x16 28x28



Layer	1:	5x5	filters
=>	24x24	5x5-tiles



Layer	1:	5x5	filters
=>	24x24	5x5-tiles

Layer	2:	2x2	pooling	 =>	6x6-tiles



Layer	1:	5x5	filters
=>	24x24	5x5-tiles

Layer	2:	2x2	pooling	 =>	6x6-tiles
Layer	2:	2x	subsampling
=>	12x12	6x6-tiles at	stride	2



Layer	1:	5x5	filters
=>	24x24	5x5-tiles

Layer	2:	2x2	pooling	 =>	6x6-tiles
Layer	2:	2x	subsampling
=>	12x12	6x6-tiles at	stride	2

Layer	3:	5x5	filters
=>	5x5	6x6-tiles at	stride	2



Layer	1:	5x5	filters
=>	24x24	5x5-tiles

Layer	2:	2x2	pooling	 =>	6x6-tiles
Layer	2:	2x	subsampling
=>	12x12	6x6-tiles at	stride	2

Layer	3:	5x5	filters
=>	5x5	6x6-tiles at	stride	2
=>	8x8	14x14-tiles at	stride	2



Layer	1:	5x5	filters
=>	24x24	5x5-tiles

Layer	2:	2x2	pooling	 =>	6x6-tiles
Layer	2:	2x	subsampling
=>	12x12	6x6-tiles at	stride	2

Layer	3:	5x5	filters
=>	5x5	6x6-tiles at	stride	2
=>	8x8	14x14-tiles at	stride	2

Layer	4:	2x2	pooling	 =>	16x16-tiles



Layer	1:	5x5	filters
=>	24x24	5x5-tiles

Layer	2:	2x2	pooling	 =>	6x6-tiles
Layer	2:	2x	subsampling
=>	12x12	6x6-tiles at	stride	2

Layer	3:	5x5	filters
=>	5x5	6x6-tiles at	stride	2
=>	8x8	14x14-tiles at	stride	2

Layer	4:	2x2	pooling	 =>	16x16-tiles
Layer	4:	2x	subsampling
=>	4x4	16x16-tiles at	stride	4



Layer	1:	5x5	filters
=>	24x24	5x5-tiles

Layer	2:	2x2	pooling	 =>	6x6-tiles
Layer	2:	2x	subsampling
=>	12x12	6x6-tiles at	stride	2

Layer	3:	5x5	filters
=>	5x5	6x6-tiles at	stride	2
=>	8x8	14x14-tiles at	stride	2

Layer	4:	2x2	pooling	 =>	16x16-tiles
Layer	4:	2x	subsampling
=>	4x4	16x16-tiles at	stride	4

Layer	5:	4x4	filters
=>	1x1	28x28-tile



Assignments	until	next	week

• Recap:	Bjarne	&	Jonathan
• Reading:
CNN	papers	in	detail
Doodle	for	picking	one	out	of	six
• Programming	exercise:
High-level	Tensorflowwith	tf.Estimator

Slides	&	assignments	on:	https://mlcogup.github.io/idl_ws18/
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