RN
- Universitit Potsdam
et

* Qo
c
5

1]
LD

Introduction to Deep Learning
xui

Recurrent Neural Networks |

Andreas Krug, M.Sc.

ankrug@ uni-potsdam.de

19. November 2018

Qo‘wers 1229’,

- I Universitit Potsdam O rga

. Q’am

* max. 17 participants based on submissions

e Last day to withdraw from the course/
| will admit those with regular submissions on PULS
(one personin PULS would not be admitted)

* I’ll provide optional programming exercises
 We'll focus on the small course projects

- @ﬁ@ Universitit Potsdam
et

Last time on IDL &
open questions

CNN papers

\So‘wersjtéf
. @ﬁ@ Universitit Potsdam
o((<D

o dam

Group exercise

RNN architectures

-5, WA Univeritt Potsdam Group Work Instructions

o J’Q'am
° .

1. Match architectures with captions and circuit diagrams!
Draw missing circuit diagrams!

Annotate architectures with statements from next slide!
(multiple matches possible)

4. *Find possible mistakes in the architecture figures!
5. *Map out relationshipsbetween architectures!
time for task: 35 min

* 7 architectures

* 5 min on average per architecture

* (some) enumerated snippets can be used multiple times

RN

. @ﬁ@ Universitit Potsdam
o((<D
. &Q'e

m
.
.

1. output at each time step

2. output after full input sequence has been read

3. input x serves as constant context or/and to initialize hidden state

4. recurrent connections between hidden units

5. recurrent connections from previous output

6. + optional output-to-hidden connections

7. encoder (reader): read input sequence, generate hidden state

8. decoder (writer): generate output sequence from hidden state

9. encoder-decoder

10. h(t) relevant summary of past (forward), g(t) relevant summary of future (backward)
11. trainable with “teacher forcing”

12. training can be parallelized

13. can compute any function computable by a Turing machine

14. can model arbitrary distribution over sequences of y given sequences of x

15. can model dependencies on both the past and the future

16. lacks important information from past unless o is very high-dimensional & rich

\So‘wers 1'&9.,[

@ﬁ@ Universitit Potsdam Sequence to Sequence (Same
: length)

a
C &0
R

1. output ateach time step

o 6. + optional output-to-hidden @
connections
4. recurrent connections

between hidden units

w

P
Unfold

0505

13. can compute any function computable by a Turing machine
(universal function approximator)

R sequence to sequence (same

g @A@ Universitit Potsdam
et

o length)

1. output ateach time step

5. only recurrent connections
from previous output

—
l o() ‘
Unfold \
\ \ 1%.%

\

W 4 -
/

11. trainable with “teacher forcing”

12. training can be parallelized @ @

16. lacks important information from past
unless o0 is very high-dimensional & rich

Q°<‘ ° °

:.g”% @ﬁ@ Universitit Potsdam Te a C h e r F O rC | n g

* use targets as prior
outputs

* time steps decoupled

approximate
correct output

 training parallelizable

Train time Test time

(may also be applied to RNNs with additional hidden-to-hidden connections)

RN

. @ﬁ@ Universitit Potsdam
o((<D
. J’Q'a

m
.
.

4. recurrent connections
between hidden units

5. recurrent connections
from previous output

11. trainable with
“teacher forcing”

” ~

Unfold \

. / \

sequence to sequence
(same length)

1. output at each time step

v

R R

U

4. can model arbitrary distribution over
sequences of y given sequences of x

=

bi-directional sequence to

@ﬁ@ Universitit Potsdam

o sequence (same length)
1. output ateach time step (extendable to 2D inputs)
4. recurrent connections
between hidden units
6. + optional output-to-hidden
connections

(in that case 11. trainable
with “teacher forcing”)

10. g(t) relevant summary
of future (backward)

10. h(t) relevant summary
of past (forward)

15. can model dependencies on
both the past and the future

\So‘wers 1'49.,[

5 WA Universitt Potsdamn sequence to fixed-size vector

Q’,g m

2. output after full input sequence has been read

4. recurrent connections
between hidden units

r7 N\

P ...

\ W
~ ”

7. encoder (reader): read input sequence, generate hidden state
(= encoder part of encoder-decoder architecture)

\')“i CTSIg,

@a@ Universitit Potsdam leGd‘S'Ze (”ConteXt”) VeCtor
to sequence

strange indexing (stressing prediction of next output)
(needs to determine

end of sequence)

5. recurrent connections
from [previous] output
(6. usually with output-to-hidden
connections)

11. trainable with
“teacher forcing”

4. recurrent connections
between hidden units

3. input x serves as constant context
or / and to initialize hidden state

8. decoder (writer): generate output sequence from hidden state
(= decoder part of encoder-decoder architecture)

\')“i CTSIg,
?
.S

@a@ Universitit Potsdam
4

m
.
.

simplified figure
without state and
transition labels

4. recurrent connections
between hidden units

5. recurrent connections
from [previous] output

does not N
make sense

sequence to sequence
(variable length)

Encoder

\

R
L

loss not shown!

9. encoder-decoder

7. encoder (reader):
read input sequence,
generate hidden state

(bottleneck)

8. decoder (writer):
generate output sequence
from hidden state

Qo‘wers 1229’,

5, g s Agsionments until next week

o J’Q'am
° .

o

* Responsible for recap: Edit & Ignatia

* Reading:

Recurrent/Recursive Neural Networks part I
* Project:

find partners and topic

create channel on Mattermost

* Programming exercise (without submission):
language modelling with RNN

Slides & assignments on: https://mlcogup.github.io/idl ws18/

