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Orga

• max.	17	participants	based	on	submissions
• Last	day	to	withdraw	from	the	course/
I	will	admit	those	with	regular	submissions	on	PULS
(one	person	in	PULS	would	not	be	admitted)

• I’ll	provide	optional	programming	exercises
• We’ll	focus	on	the	small	course	projects
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CNN	papers

Last	time	on	IDL	&
open	questions
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RNN	architectures

Group	exercise



Group	Work	Instructions

1. Match	architectures	with	captions	and	circuit	diagrams!
2. Draw	missing	circuit	diagrams!
3. Annotate	architectures	with	statements	from	next	slide!

(multiple	matches	possible)
4. *Find	possible	mistakes	in	the	architecture	figures!
5. *Map	out	relationships	between	architectures!
time	for	task:	35	min
• 7	architectures
• 5	min	on	average	per	architecture	
• (some)	enumerated	snippets	can	be	used	multiple	times
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1. output	 at	each	time	step
2. output	 after	full	 input	 sequence	 has	been	 read
3. input	 x	serves	as	constant	context	or/and	 to	initialize	hidden	 state

4. recurrent	connections	 between	hidden	 units
5. recurrent	connections	 from	 previous	 output
6. +	optional	 output-to-hidden	 connections

7. encoder	 (reader):	 read	input	 sequence,	 generate	hidden	 state
8. decoder	 (writer):	generate	output	 sequence	 from	hidden	 state
9. encoder-decoder
10. h(t)	 relevant	 summary	 of	past	(forward),	 g(t)	 relevant	summary	 of	future	 (backward)

11. trainable	with	“teacher	forcing”
12. training	 can	be	parallelized

13. can	compute	 any	function	 computable	 by	a	Turing	machine
14. can	model	 arbitrary	distribution	 over	sequences	 of	y	given	sequences	 of	x
15. can	model	 dependencies	 on	both	 the	past	and	the	 future
16. lacks	important	 information	 from	past	unless	o	is	very	high-dimensional	 &	rich
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sequence	to	sequence	(same	
length)

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t , the input is x t, the hidden layer activations are
h( )t , the outputs are o( )t , the targets are y( )t and the loss is L( )t . (Left) Circuit diagram.
(Right) Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by Fig. . The RNN10.3
in Fig. can choose to put any information it wants about the past into its hidden10.3
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. .10.2.1
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1.	output	at	each	time	step

4.	recurrent	connections	
between	hidden	units

13.	can	compute	any	function	computable	by	a	Turing	machine
(universal	function	 approximator)

6.	+	optional	output-to-hidden	
connections
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to the hidden layer. At each time step t , the input is x t, the hidden layer activations are
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in Fig. can choose to put any information it wants about the past into its hidden10.3
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. .10.2.1
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sequence	to	sequence	(same	
length)
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1.	output	at	each	time	step

5.	only	recurrent	connections
from	previous	output

12.	training	can	be	parallelized

11.	trainable	with	“teacher	forcing”

16.	lacks	important	 information	 from	past	
unless	𝒐 is	very	high-dimensional	 &	rich
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Teacher	Forcing

• use	targets	as	prior	
outputs
• time	steps	decoupled
• training	parallelizable

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

o(t−1)o(t−1) o( )to( )t
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Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left) correct outputAt train time, we feed the y( )t drawn from the train
set as input to h( +1)t . (Right) When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y( )t with the model’s output
o( )t , and feed the output back into the model.

383

approximate	
correct	output

(may	also	be	applied	to	RNNs	with	additional	hidden-to-hidden	connections)
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sequence	to	sequence
(same	length)

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS
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Figure 10.10: A conditional recurrent neural network mapping a variable-length sequence
of x values into a distribution over sequences of y values of the same length. Compared
to Fig. , this RNN contains connections from the previous output to the current state.10.3
These connections allow this RNN to model an arbitrary distribution over sequences of y
given sequences of of the same length. The RNN of Fig. is only able to representx 10.3
distributions in which the y values are conditionally independent from each other given
the values.x
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t , the input is x t, the hidden layer activations are
h( )t , the outputs are o( )t , the targets are y( )t and the loss is L( )t . (Left) Circuit diagram.
(Right) Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by Fig. . The RNN10.3
in Fig. can choose to put any information it wants about the past into its hidden10.3
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. .10.2.1
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information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t , the input is x t, the hidden layer activations are
h( )t , the outputs are o( )t , the targets are y( )t and the loss is L( )t . (Left) Circuit diagram.
(Right) Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by Fig. . The RNN10.3
in Fig. can choose to put any information it wants about the past into its hidden10.3
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. .10.2.1
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1.	output	at	each	time	step

11.	trainable	with
“teacher	forcing”

14.	can	model	arbitrary	distribution	 over	
sequences	of	y	given	sequences	of	x

4.	recurrent	connections
between	hidden	units

5.	recurrent	connections
from	previous	output
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bi-directional	sequence	to	
sequence	(same	length)	

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

conditional distribution P(y(1), . . . ,y( )τ | x(1) , . . . ,x( )τ ) that makes a conditional
independence assumption that this distribution factorizes as



t

P (y ( )t | x(1) , . . . ,x( )t ). (10.35)

To remove the conditional independence assumption, we can add connections from
the output at time t to the hidden unit at time t+ 1, as shown in Fig. . The10.10
model can then represent arbitrary probability distributions over the y sequence.
This kind of model representing a distribution over a sequence given another
sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in Sec. .10.4
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g (t−1)g (t−1) g ( )tg ( )t g ( +1)tg ( +1)t

Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y , with loss L( )t at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t , the output units o( )t can benefit from a relevant summary of the past in its h( )t

input and from a relevant summary of the future in its g( )t input.
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1.	output	at	each	time	step

10.	h(t)	 relevant	summary
of	past	(forward)

10.	g(t)	 relevant	summary
of	future	 (backward)

15.	can	model	dependencies	 on
both	 the	past	and	the	future

6.	+	optional	output-to-hidden
connections

(in	that	case	11.	trainable
with	“teacher	forcing”)

(extendable	to	2D	inputs)

4.	recurrent	connections
between	hidden	units

x
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t , the input is x t, the hidden layer activations are
h( )t , the outputs are o( )t , the targets are y( )t and the loss is L( )t . (Left) Circuit diagram.
(Right) Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by Fig. . The RNN10.3
in Fig. can choose to put any information it wants about the past into its hidden10.3
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. .10.2.1
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sequence	to	fixed-size	vector

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.

h(t−1)h(t−1)

W
h( )th( )t . . .. . .

x(t−1)x(t−1) x( )tx( )t x( )...x( )...

W W

U U U

h( )τh( )τ

x( )τx( )τ

W

U

o( )τo( )τy( )τy( )τ

L( )τL( )τ

V

. . .. . .

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o( )t can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y( )t as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum

likelihood criterion is

log p

y (1),y(2) | x(1),x(2)


(10.15)
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2.	output	after	full	input	 sequence	has	been	read

7.	encoder	(reader):	read	input	 sequence,	generate	hidden	 state
(	=	encoder	part	of	encoder-decoder	architecture)

4.	recurrent	connections
between	hidden	units
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fixed-size	(“context”)	vector	
to	sequence

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

o(t−1)o(t−1) o( )to( )t o( +1)to( +1)t

L(t−1)L(t−1) L( )tL( )t L( +1)tL( +1)t

y(t−1)y(t−1) y( )ty( )t y( +1)ty( +1)t

h(t−1)h(t−1) h( )th( )t h( +1)th( +1)t
WW W W

s( )...s( )...
h( )...h( )...

V V V

U U U

xx

y( )...y( )...

R R R R R

Figure 10.9: An RNN that maps a fixed-length vector x into a distribution over sequences
Y. This RNN is appropriate for tasks such as image captioning, where a single image is
used as input to a model that then produces a sequence of words describing the image.
Each element y( )t of the observed output sequence serves both as input (for the current
time step) and, during training, as target (for the previous time step).
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8.	decoder	(writer):	generate	output	 sequence	from	hidden	 state
(	=	decoder	part	of	encoder-decoder	architecture)

5.	recurrent	connections
from	[previous]	output

(6.	usually	with	output-to-hidden	
connections)

3.	input	x	serves	as	constant	context
or	/	and	to	initialize	hidden	state

(needs	 to	determine
end	of	sequence)

strange	indexing	 (stressing	prediction	of	next output)

4.	recurrent	connections
between	hidden	units

11.	trainable	with	
“teacher	forcing”
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sequence	to	sequence	
(variable	length)	

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Encoder

…

x(1)x(1) x(2)x(2) x( )...x( )... x(n x)x(n x)

Decoder

…

y(1)y(1) y(2)y(2) y( )...y( )... y(n y )y(n y )

CC

Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y(1), . . . ,y(n y)) given an input sequence
(x(1) ,x(2) , . . . ,x(nx) ). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.
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loss	not	shown!

does	not
make	sense

simplified	 figure	
without	 state	and	
transition	labels 7.	encoder	(reader):	

read	input	 sequence,	
generate	hidden	state

8.	decoder	(writer):	
generate	output	 sequence	

from	hidden	 state

(bottleneck)

9.	encoder-decoder

4.	recurrent	connections
between	hidden	units

5.	recurrent	connections
from	[previous]	output
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Assignments	until	next	week

• Responsible	for	recap:	Edit	&	Ignatia
• Reading:
Recurrent/Recursive	Neural	Networks	part	II
• Project:
find	partners	and	topic
create	channel	on	Mattermost
• Programming	exercise	(without	submission):
language	modelling	with	RNN

Slides	&	assignments	on:	https://mlcogup.github.io/idl_ws18/
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