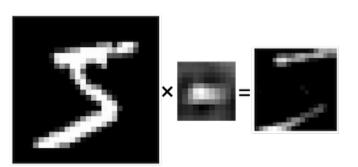


Introduction to Deep Learning

Recurrent Neural Networks II

Andreas Krug, M.Sc. ankrug@uni-potsdam.de



26. November 2018

Exercise

Exam questions

General hints

- start with the most important points
- be concise and precise
- use sketches (be prepared to)
- go from high-level to details
- answer the question (ask back if necessary to make sure you understood it correctly)

Pair exams

- In pairs
 - A is the examiner
 - *B* has <u>1 min</u> for answering (use it!)
 - A has <u>1 min</u> to give B feedback (correct? precise? high- to low-level? useful sketch?)
- all together
 - briefly discuss the solution <u>~1 min</u>
- swap roles after each question

What makes RNNs stand out from the other network architectures you learned about so far?

What is the difference between (a) applying (1D-)convolution along the sequence dimension and (b) using an RNN to process the sequence?

What is "back-propagation through time"?

Which problems can typically occur during RNN training and why? Bonus: Outline possible remedies!

How do RNNs generalize to recursive NNs?

26. November 2018

Introduction to Deep Learning

9

What is "Teacher Forcing"? Bonus: Discuss advantages and problems!

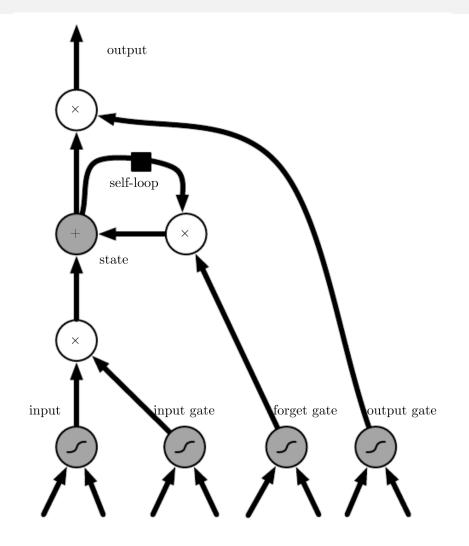
What is an LSTM and how does it address the challenge of learning long-term dependencies?

The forget gate in an LSTM uses a sigmoid function on the linear transformation of the hidden layer and a new input. Could other functions be used as well and why (not)?

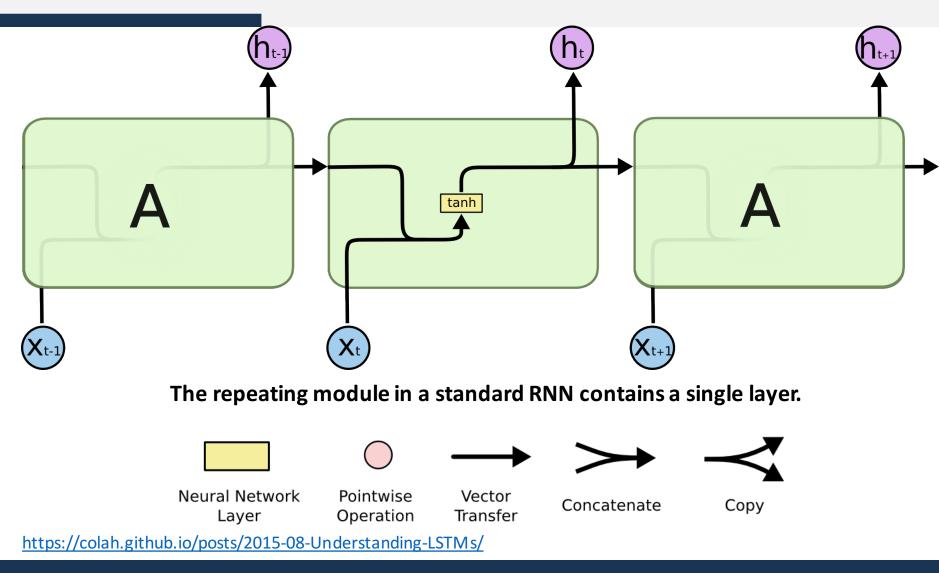
A closer look at LSTMs

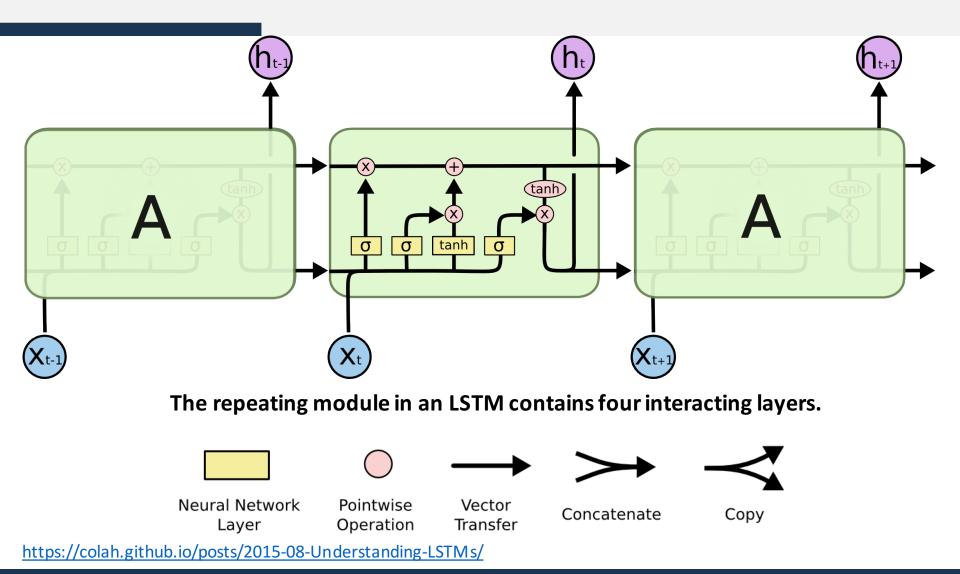
presentation

LSTM in Deep Learning Book

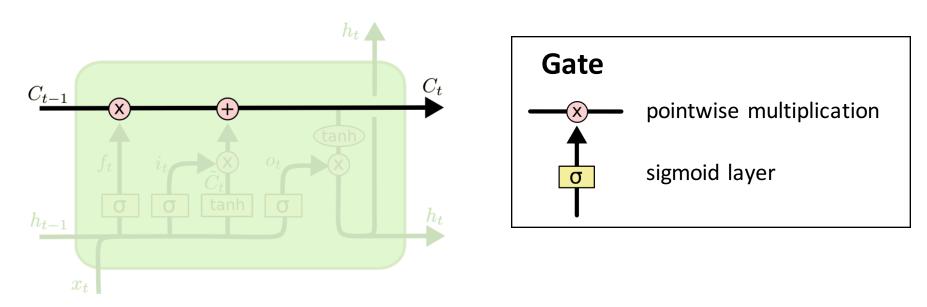


Simple RNN

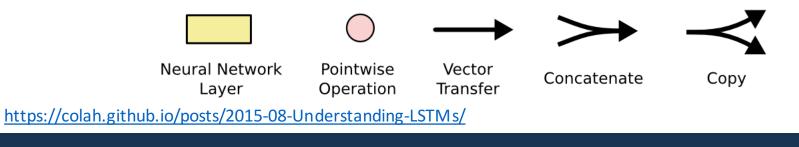




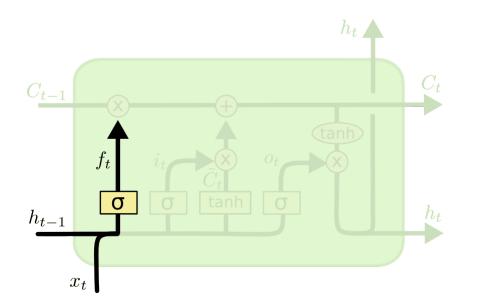
LSTM Cell State



Removing or adding information to the cell state is controlled by gates.

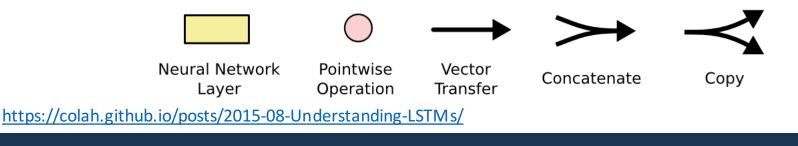


LSTM Forget Gate

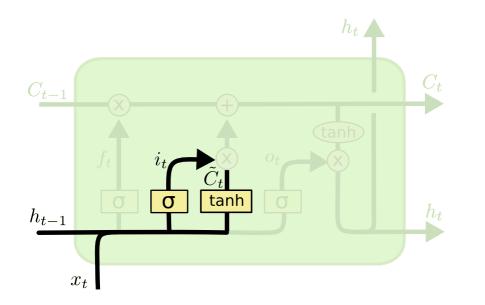


$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$

Decide what information from cell state is deleted (0) or kept (1).

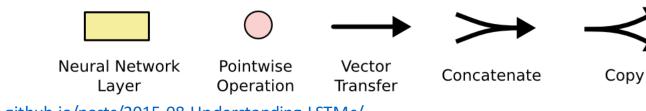


LSTM Input Gate



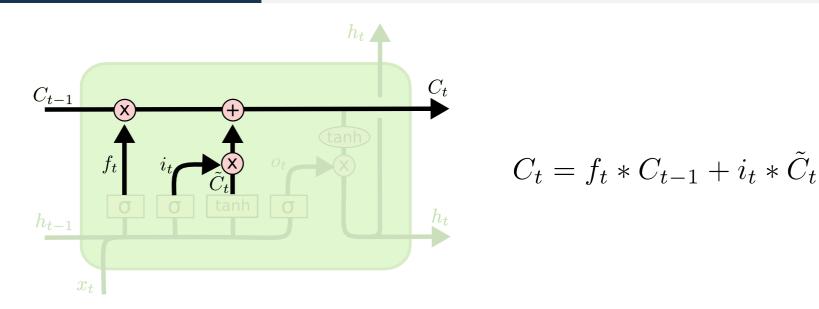
$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Decide what new information to store.

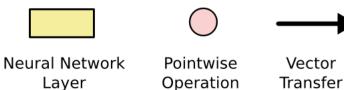


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Cell State Update



Delete information and add new one.



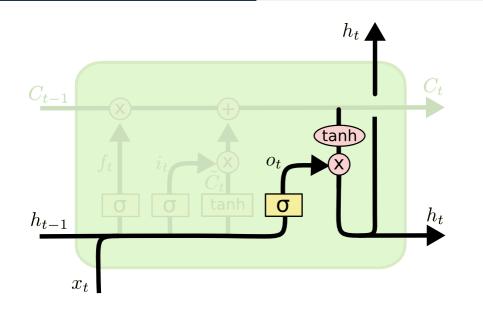
Concatenate

Copy

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

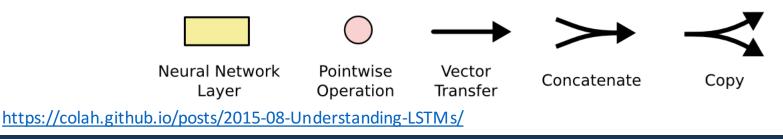
Layer

LSTM Output Gate

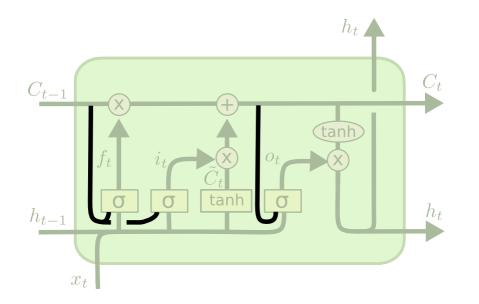


$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$ $h_t = o_t * \tanh \left(C_t \right)$

Transform state and decide what to output.



Peep Hole Connections



$$f_{t} = \sigma \left(W_{f} \cdot \left[\boldsymbol{C_{t-1}}, h_{t-1}, x_{t} \right] + b_{f} \right)$$
$$i_{t} = \sigma \left(W_{i} \cdot \left[\boldsymbol{C_{t-1}}, h_{t-1}, x_{t} \right] + b_{i} \right)$$
$$o_{t} = \sigma \left(W_{o} \cdot \left[\boldsymbol{C_{t}}, h_{t-1}, x_{t} \right] + b_{o} \right)$$

Allow gates to look at cell states.

Vector

Transfer

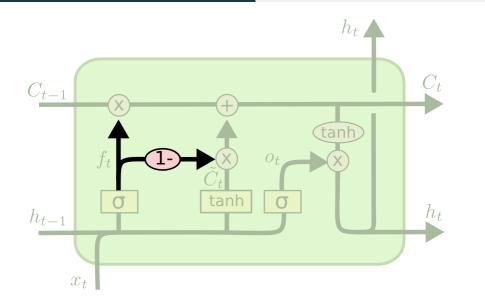
Concatenate

Сору

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

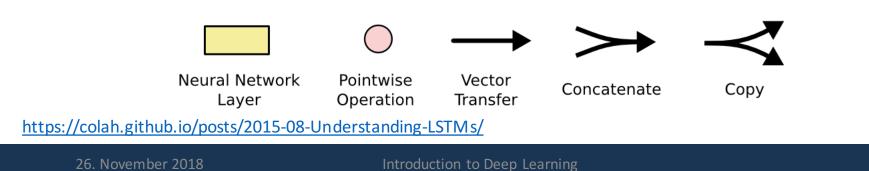
26. November 2018

Coupled I/F Gates

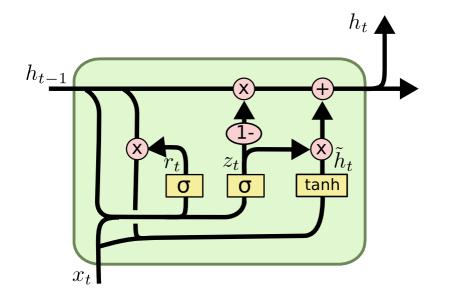


$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$

Only input new values to the state when something older gets forgotten.

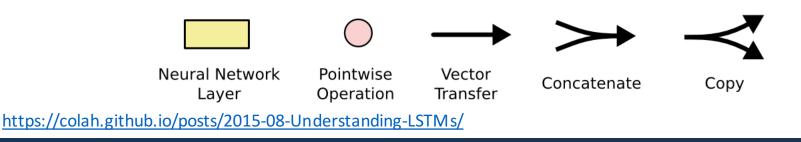


Gated Recurrent Units (GRUs)



$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Combines forget and input gates into a single update gate. Merges cell state and hidden state.



• Responsible for recap: see Mattermost

	<u>Next week (Dec 3)</u> René will substitute for me in-class time for your discussion	<u>The week after (Dec 10)</u> no substitute start your projects
Reading	Attention and Memory	Practical Methodology
Project	Find group & topic open public channel on MM	Present your project and data in the opened MM channel
Programming	(bonus / no submission) More advanced/realistic language modelling with RNNs	

Slides & assignments on: https://mlcogup.github.io/idl_ws18/