

Introduction to Deep Learning

Optimization

Andreas Krug, M.Sc.

ankrug@uni-potsdam.de

07. January 2019

Aspects you liked:

- Reading material (with papers, blogs)
- In-class activities
- Inverted classroom
- Programming exercises
- Good choice and structure of the topics

Aspects you disliked:

- Too much workload
- Too little/no discussion of programming in class
- Programming assignments too complex and/or vague
- the "right answer" is not always given especially, if no answers pop up during group work

Suggestions:

- stretch contents to IDL1 and IDL2
- Emphasize/point out the "correct answer" after discussions
- Provide solutions for programming tasks
- More non-DL-book material
- More guidance in the beginning (with theory, in-class exercises, programming tasks)
- PyTorch (more intuitive than TensorFlow)

Topics you like to revisit:

- RNNs, LSTMs
- Attention + Transformer
- Backpropagation
- Complex architectures

Topic you like to be covered:

- Debugging code
- Hyperparameter tuning
- in-class project presentations for feedback
- Reinforcement Learning
- Autoencoder

remaining semester schedule

date	topic	project
Jan 14	Auto-Encoder	
Jan 21	Introspection (brief overview by Andreas)	Short presentation for feedback
Jan 28	Revisiting topics	
Feb 4	Final course evaluation	final presentation
Feb 11 – Mar 31	oral exam (vote via doodle, enroll via moodle)	

Expert groups

07. January 2019

- 4 sets of topics \rightarrow 4 groups of experts
- Within each expert group (20'):
 - Prepare to explain <u>concept</u> behind each topic by extracting <u>the key points</u> together (feel free to use the book/internet)
- in mixed-expert groups (20' = 5' per expert):
 - Each in turn explains his/her topics briefly (3-4')
 - Others may ask questions and give feedback (concise information? Missing points?) (1-2')

• Example question:

Is learning the same as optimization?

- Not the same
- Often the cost/loss function is optimized, this in turn maximizes a performance measure e.g. use negative log likelihood to optimize 0-1-loss
- As we want a model to generalize well, we don't even optimize the cost function completely, e.g. in applying early stopping
- Moreover, ML algorithms often don't optimize the complete cost function, as they use batches for gradient computation instead of the complete data set

que • •	estion set 1 Why is ill-conditioning challenging for optimization/learning? What is RMSProp? How does batch normalization work?	que: •	stion set 2 Why are flat regions (saddle points, plateaus) challenging for optimization/learning? What is AdaGrad? How does (greedy) supervised pre-training work?
question set 3		question set 4	
•	Why are local minima challenging for optimization/learning?	•	Why are cliffs and long-term dependencies challenging for optimization/learning?
•	What is Nesterov Momentum and how is it different to standard Momentum?	•	What is Stochastic Gradient Descent with Momentum?
•	How does (block) coordinate descent work?	•	How does curriculum learning work?

Assignments

- Responsible for recap: Sonu & Reza
- Reading on Auto-Encoders
- (no programming task)
- Time for your project

Slides & assignments on: https://mlcogup.github.io/idl_ws18/schedule