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Orga

• Oral exam
• 10 people on Moodle
• 8 people picked a slot
• You may change your 2 days in advance
• Picking a time slot is mandatory

• PEP evaluation
• 3 people participated
• Please participate – I want to (briefly) discuss the results

next week
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Question 1
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What makes RNNs stand out 
from the other network architectures 

you learned about so far (MLPs, CNNs)?

Introduction to Deep Learning

• Recurrent connections
• Special training method:

back-propagation through time (BPTT)
• Weights shared across time

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have
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Question 2
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What is the difference between 
(a) applying (1D-)convolution 

along the sequence dimension and 
(b) using an RNN to process the sequence?

Introduction to Deep Learning

• Convolution processes 
a window of information 
(state-less)
• RNNs process the sequence

with a hidden state per time step

xCHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS
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Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t , the input is x t, the hidden layer activations are
h( )t , the outputs are o( )t , the targets are y( )t and the loss is L( )t . (Left) Circuit diagram.
(Right) Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by Fig. . The RNN10.3
in Fig. can choose to put any information it wants about the past into its hidden10.3
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o , and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in Sec. .10.2.1
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Question 3
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What is "back-propagation through time"?

Introduction to Deep Learning

• Unroll the recurrent
computation graph
• apply back-propagation

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS
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Question 4
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Which problems can typically occur

during RNN training and why? 

Bonus: Outline possible remedies!

Introduction to Deep Learning

• Exploding or vanishing gradients

• (" > 1)& or (" < 1)&
extremely non-linear behavior

• long-term-dependencies are hard to capture

• gradient clipping (exploding)

skip connections, LSTMs (vanishing)



Question 5
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How do RNNs generalize to recursive NNs?

Introduction to Deep Learning

• Weight sharing in trees 
(instead of chains)
• Tree has to be given

e.g. by a parser
From Stanford “NLP with Deep Learning“ Lecture 14

https://youtu.be/RfwgqPkWZ1w

won‘t be asked in the exam

https://youtu.be/RfwgqPkWZ1w


Question 6
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What is "Teacher Forcing"? 
Bonus: Discuss advantages and problems!

Introduction to Deep Learning

• Only for models with 
output-to-hidden connections
• During training: ground truth y(t)

is used as o(t)
• Pro: parallelized training 

(without h-h connections)
• Con: o(t) in training can be 

different from o(t) during test time
→ mixed training

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS
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Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left) correct outputAt train time, we feed the y( )t drawn from the train
set as input to h( +1)t . (Right) When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y( )t with the model’s output
o( )t , and feed the output back into the model.
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Question 7
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What is an LSTM 
and how does it address the challenge of learning 

long-term dependencies?

Introduction to Deep Learning

• Self-loops to produce paths 
where gradient can flow 
for long durations

• Weight on self-loop 
conditioned on context (gates)

The repeating module in an LSTM contains four interacting layers.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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The forget gate in an LSTM uses a sigmoid function on the 
linear transformation of the hidden layer and a new input.

Could other functions be used as well 
and why (not)?

Introduction to Deep Learning

• Obtain values between 0 and 1
(how much of the information 
goes through the gate)



Your exam questions
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1 MLPs, Gradient Descent & Backpropagation
2 CNNs
3 RNNs, LSTMs
4 Attention & Memory
5 Practical Methodology/Good Practice

• For each topic: Write down 1 or 2 questions, which
you would ask as the examiner (or you would like to
be asked), individually - if possible digitally 30‘
• Try your favorite questions on your neighbor 15‘
• Afterwards, I‘ll collect the questions 5‘

I will have a look all questions
Those which I find suitable for the exam, 
I will share with you – and also use some of them

6 Regularization
7 Optimization
8 Autoencoders
9 Introspection



Assignments

• Reading on Model Compression & Transfer 
Learning (no exercise next week, but Q&A)
• Participate in the PEP evaluation until Sunday Feb 3
• Time for your project
• prepare your final project presentation
• write me on MM if you want to present and

how much time you will need until Friday Feb 1
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Slides & assignments on: https://mlcogup.github.io/idl_ws18/schedule

https://mlcogup.github.io/idl_ws18/schedule

