Introduction to Deep Learning
* = optional reading
| Date | Topic | Readings / Videos | Assignments | 
|---|---|---|---|
| 16 Oct | |||
| 23 Oct | 
		   
		    MLPs, Gradient Descent & Backpropagation  | 
		
        First Steps | |
| 30 Oct | 
		   
		    CNNs  | 
		
        Visualization | |
| 06 Nov | 
		   
		    CNNs (cont.)  | 
		
        
          
             
  | 
	  CNNs & The Dataset API | 
| 13 Nov | 
		   
		    RNNs  | 
		
        LeNet, Embeddings & Visualizing Hidden Spaces | |
| 20 Nov | 
		   
		    RNNs (cont.)  | 
		
        Language Modeling & RNNs | |
| 27 Nov | 
		   
		    Autoencoders  | 
		
        More Realistic Language Modeling & RNNs | |
| 04 Dec | 
		   
		    Introspection & Advanced Architectures  | 
		
        Autencoders | |
| 11 Dec | 
		   
		    Optimization  | 
		
        Introspection & Advanced Visualizations | |
| 18 Dec | 
		   
		    Regularization  | 
		
        ||
| 08 Jan | 
		   
		    Practical Methodology  | 
		
        ||
| 15 Jan | 
		   
		    Course Project  | 
		
        ||
| 22 Jan | 
		   
		    Attention and Memory  | 
		
        ||
| 29 Jan | 
		   
		    Model Compression & Transfer Learning  |