Introduction to Deep Learning
* = optional reading
Date | Topic | Readings / Videos | Assignments |
---|---|---|---|
16 Oct | |||
23 Oct |
MLPs, Gradient Descent & Backpropagation |
First Steps | |
30 Oct |
CNNs |
Visualization | |
06 Nov |
CNNs (cont.) |
|
CNNs & The Dataset API |
13 Nov |
RNNs |
LeNet, Embeddings & Visualizing Hidden Spaces | |
20 Nov |
RNNs (cont.) |
Language Modeling & RNNs | |
27 Nov |
Autoencoders |
More Realistic Language Modeling & RNNs | |
04 Dec |
Introspection & Advanced Architectures |
Autencoders | |
11 Dec |
Optimization |
Introspection & Advanced Visualizations | |
18 Dec |
Regularization |
||
08 Jan |
Practical Methodology |
||
15 Jan |
Course Project |
||
22 Jan |
Attention and Memory |
||
29 Jan |
Model Compression & Transfer Learning |