Introduction to Deep Learning
* = optional reading
| Date | Topic | Readings / Videos | Assignments |
|---|---|---|---|
| 16 Oct | |||
| 23 Oct |
MLPs, Gradient Descent & Backpropagation |
First Steps | |
| 30 Oct |
CNNs |
Visualization | |
| 06 Nov |
CNNs (cont.) |
|
CNNs & The Dataset API |
| 13 Nov |
RNNs |
LeNet, Embeddings & Visualizing Hidden Spaces | |
| 20 Nov |
RNNs (cont.) |
Language Modeling & RNNs | |
| 27 Nov |
Autoencoders |
More Realistic Language Modeling & RNNs | |
| 04 Dec |
Introspection & Advanced Architectures |
Autencoders | |
| 11 Dec |
Optimization |
Introspection & Advanced Visualizations | |
| 18 Dec |
Regularization |
||
| 08 Jan |
Practical Methodology |
||
| 15 Jan |
Course Project |
||
| 22 Jan |
Attention and Memory |
||
| 29 Jan |
Model Compression & Transfer Learning |