Introduction to Deep Learning
* = optional reading
| Date | Topic | Slides | Readings / Videos | Assignments |
|---|---|---|---|---|
| 15 Oct |
Introductions |
|||
| 22 Oct |
MLPs, Gradient Descent & Backpropagation |
First Steps | ||
| 29 Oct |
CNNs |
|
Visualization | |
| 05 Nov |
CNNs (cont.) |
CNNs | ||
| 12 Nov |
CNNs (cont.) |
TensorFlow Estimator | ||
| 19 Nov |
RNNs |
Object Detection | ||
| 26 Nov |
RNNs (cont.) |
Language Modeling & RNNs | ||
| 03 Dec |
Attention & Memory |
|
More Realistic Language Modeling & RNNs (two weeks) | |
| 10 Dec |
Practical Methodology |
|
More Realistic Language Modeling & RNNs (two weeks) | |
| 17 Dec |
Regularization |
|||
| 07 Jan |
Optimization |
|||
| 14 Jan |
Autoencoders |
|||
| 21 Jan |
Introspection |
|||
| 28 Jan |
Revision (selected topics) |
|||
| 04 Feb |
Model Compression & Transfer Learning |
|