Introduction to Deep Learning
* = optional reading
Date | Topic | Slides | Readings / Videos | Assignments |
---|---|---|---|---|
15 Oct |
Introductions |
|||
22 Oct |
MLPs, Gradient Descent & Backpropagation |
First Steps | ||
29 Oct |
CNNs |
|
Visualization | |
05 Nov |
CNNs (cont.) |
CNNs | ||
12 Nov |
CNNs (cont.) |
TensorFlow Estimator | ||
19 Nov |
RNNs |
Object Detection | ||
26 Nov |
RNNs (cont.) |
Language Modeling & RNNs | ||
03 Dec |
Attention & Memory |
|
More Realistic Language Modeling & RNNs (two weeks) | |
10 Dec |
Practical Methodology |
|
More Realistic Language Modeling & RNNs (two weeks) | |
17 Dec |
Regularization |
|||
07 Jan |
Optimization |
|||
14 Jan |
Autoencoders |
|||
21 Jan |
Introspection |
|||
28 Jan |
Revision (selected topics) |
|||
04 Feb |
Model Compression & Transfer Learning |
|